Carbohydrate Timing: A Game-Changer for Your Workout

Nutrition Corner with Dr D 

Carbohydrate Timing: A Game-Changer for Your Workout

Carbohydrates play a critical role in energy production for workouts, and understanding correct  carbohydrate timing is key to achieving optimal athletic performance. Many athletes mistakenly believe that cutting carbohydrates from their diets will help them achieve their fitness goals, but this couldn't be further from the truth. In fact, carbohydrates are the primary source of fuel for your muscles during exercise. Without enough carbohydrates in your diet, your body will start to break down muscle tissue to use for energy, leading to decreased athletic performance and potential injury.

II. Types of carbohydrates

 

There are two types of carbohydrates: simple and complex. Simple carbohydrates, such as those found in sugary drinks and candy are quickly absorbed by the body. Complex carbohydrates, such as those found in whole grains and vegetables are absorbed more slowly.

 

Recent research suggests that the type of carbohydrate consumed can have a significant impact on athletic performance. For example, consuming simple carbohydrates before a workout can lead to a rapid rise in blood sugar levels, followed by a quick drop in energy levels.

 

This can result in fatigue and poor athletic performance. On the other hand, consuming complex carbohydrates before a workout can provide a sustained release of energy, leading to improved athletic performance.

 

Maltodextrin is a type of carbohydrate that is popular among athletes and fitness enthusiasts. This complex carbohydrate is rapidly absorbed by the body and provides a quick source of energy to working muscles, making it a popular choice for sports drinks and energy gels.

Recent studies have shown that consuming maltodextrin during exercise can improve endurance and delay fatigue, making it a valuable addition to an athlete's diet. However, it is important to note that consuming too much maltodextrin may lead to an increase in inflammation and oxidative stress, which can have negative effects on overall health.

 

Resistant starch is another lesser-known type of carbohydrate that has gained attention in recent years. This type of carbohydrate resists digestion in the small intestine and instead reaches the large intestine where it is fermented by gut bacteria.

 

Resistant starch can be found in foods such as beans, lentils, and unripe bananas. Recent studies have shown that consuming resistant starch before exercise can improve endurance and increase fat burning during exercise.

 

In addition to its benefits for exercise, resistant starch has also been shown to have a number of health benefits, including improving insulin sensitivity and reducing inflammation.

 

Incorporating resistant starch into one's diet may be a beneficial way to support overall health and exercise performance.

It is important to note that the timing of carbohydrate consumption can also impact athletic performance. Consuming carbohydrates too close to a workout may lead to digestive discomfort, while consuming them too far in advance may not provide enough energy during exercise. Therefore, it is recommended to consume carbohydrates 1-4 hours before exercise to optimize athletic performance.

 

Carbohydrate Metabolism

Carbohydrate metabolism is a complex process that plays a crucial role in athletic performance. During exercise, the body relies on carbohydrates to provide energy to working muscles. Recent research has shed light on how the body processes carbohydrates during exercise and the lesser-known facts about how carbohydrates affect muscle protein synthesis.

 

When carbohydrates are consumed, they are broken down into glucose and stored in the liver and muscles as glycogen. During exercise, the body taps into these glycogen stores to provide energy to working muscles. As the intensity and duration of exercise increase, the body relies more heavily on carbohydrates for energy production.

Recent studies have shown that the timing of carbohydrate consumption can have a significant impact on muscle protein synthesis. Muscle protein synthesis is the process by which the body builds new muscle tissue.

 

Consuming carbohydrates during or immediately after exercise has been shown to enhance muscle protein synthesis and promote muscle growth.

 

In addition to the timing of carbohydrate consumption, the type of carbohydrate consumed can also affect carbohydrate metabolism. Research has shown that consuming carbohydrates with a high glycemic index (GI) can result in a rapid increase in blood glucose levels, which can stimulate insulin release and promote the uptake of glucose into muscles. This can help to replenish glycogen stores and promote recovery after exercise.

 

However, consuming carbohydrates with a low glycemic index may be more beneficial for sustained energy during exercise. These carbohydrates are absorbed more slowly, resulting in a more gradual increase in blood glucose levels and a more sustained release of energy.

VI. Carbohydrate intake for exercise

Carbohydrate intake is crucial for athletes who want to perform at their best. However, the optimal carbohydrate intake for different types of exercise can vary, depending on factors such as the duration and intensity of the activity. Recent research has shed light on how athletes can calculate their individual carbohydrate needs and the benefits of carbohydrate "periodization."

 

According to the American College of Sports Medicine, athletes engaging in moderate-intensity exercise for 60-90 minutes per day require 5-7 grams of carbohydrates per kilogram of body weight, while those engaging in high-intensity exercise for more than 90 minutes per day require 8-10 grams of carbohydrates per kilogram of body weight. However, recent studies have shown that these guidelines may not be appropriate for all athletes, as individual needs can vary based on factors such as metabolic rate and glycogen stores.

 

To calculate individual carbohydrate needs, athletes can undergo a process called "fuel utilization analysis." This involves measuring the body's oxygen consumption and carbon dioxide production during exercise to determine the rate of carbohydrate and fat metabolism. This information can be used to create a personalized nutrition plan that ensures optimal carbohydrate intake for each individual.

 

Carbohydrate "periodization" is another recent development in the field of sports nutrition. This strategy involves varying carbohydrate intake based on the training schedule and competition timeline. For example, an athlete may follow a high-carbohydrate diet during intense training periods and reduce carbohydrate intake during rest periods. This approach has been shown to improve athletic performance and increase the body's ability to utilize fat as a fuel source.

 

It is important to note that the type of carbohydrate consumed can also impact athletic performance. Simple carbohydrates, such as those found in candy and sugary drinks, are quickly absorbed by the body and can provide a quick burst of energy. However, this energy is short-lived and can lead to a "crash" later on. Complex carbohydrates, such as those found in whole grains and vegetables, are absorbed more slowly by the body and provide sustained energy.

 

In addition to the type of carbohydrate, the timing of carbohydrate intake can also impact performance. Consuming carbohydrates before exercise can provide a source of energy for the body, while consuming carbohydrates after exercise can help replenish glycogen stores and aid in muscle recovery.

V. The effects of exercise on carbohydrate metabolism

Carbohydrate metabolism is an essential aspect of exercise performance, as carbohydrates are the primary fuel source for high-intensity exercise. In the short term, exercise causes an increase in glucose uptake by muscles, which leads to increased glycogen storage.

 

Long-term exercise training can also lead to adaptations that enhance carbohydrate metabolism, such as increased glucose transporter expression and increased mitochondrial capacity.

 

Recent research has shown that the timing and type of carbohydrate intake can have significant effects on exercise performance and carbohydrate metabolism. For example, consuming carbohydrates before exercise can improve endurance performance by increasing glycogen stores and delaying fatigue.

 

On the other hand, consuming carbohydrates during exercise can improve high-intensity exercise performance by providing a readily available source of fuel.

 

Another lesser-known fact is the role of carbohydrate availability in post-exercise muscle protein synthesis. Studies have shown that consuming carbohydrates after exercise can increase muscle protein synthesis rates, which may be beneficial for promoting muscle growth and recovery.

However, this effect appears to be dependent on carbohydrate availability during exercise, as exercising in a glycogen-depleted state can impair post-exercise muscle protein synthesis.

 

Calculating individual carbohydrate needs is also an important aspect of exercise performance, as the amount of carbohydrates required varies depending on the type, intensity, and duration of exercise, as well as individual factors such as body composition and metabolism.

 

Recent research has shown that carbohydrate periodization, or manipulating carbohydrate intake to match the demands of training, may be an effective strategy for optimizing exercise performance and promoting adaptations in carbohydrate metabolism.

 

For example, some studies have shown that training with low-carbohydrate availability may enhance mitochondrial adaptations and improve endurance performance.

 

Overall, understanding the effects of exercise on carbohydrate metabolism is crucial for optimizing exercise performance and promoting adaptations to training. Recent research has highlighted the importance of carbohydrate timing, type, and availability in promoting exercise performance and adaptations in carbohydrate metabolism.

 

Additionally, individualized carbohydrate intake and periodization may be effective strategies for optimizing exercise performance and promoting adaptations in carbohydrate metabolism.

 

VI. Carbohydrate timing and exercise

Carbohydrate timing is an essential aspect of exercise performance and recovery. Recent research suggests that carbohydrate timing can have a significant impact on exercise performance and recovery by affecting glycogen resynthesis, muscle protein synthesis, and overall energy levels. In this section, we will discuss the importance of carbohydrate timing and its lesser-known facts.

 

Carbohydrate timing refers to the strategic consumption of carbohydrates before, during, and after exercise to optimize performance and recovery. Carbohydrate availability is critical for exercise performance as it provides the necessary energy for muscle contractions.

 

However, research shows that the timing of carbohydrate consumption can have a significant impact on muscle glycogen resynthesis, which is crucial for recovery and performance.

 

Studies have shown that consuming carbohydrates immediately after exercise can enhance glycogen resynthesis by up to threefold compared to delaying carbohydrate consumption by even a few hours.

 

This is because muscle cells are most receptive to the uptake of glucose and glycogen synthesis during the first few hours after exercise. Moreover, consuming carbohydrates before exercise can improve glycogen storage, allowing for better performance during prolonged exercise.

 

In addition to glycogen resynthesis, carbohydrate timing can also affect muscle protein synthesis. Research has shown that consuming carbohydrates before exercise can enhance muscle protein synthesis by increasing insulin levels.

 

Insulin is an anabolic hormone that promotes muscle protein synthesis and inhibits muscle breakdown. Therefore, consuming carbohydrates before exercise can provide the necessary energy for exercise while also promoting muscle growth and recovery.

 

Another lesser-known fact about carbohydrate timing is the benefits of pre-exercise carbohydrate feeding. Studies have shown that consuming carbohydrates before exercise can improve exercise performance by increasing energy levels and reducing fatigue.

 

This is because carbohydrates provide readily available energy for muscle contractions, allowing for better performance during high-intensity exercise. Moreover, consuming carbohydrates before exercise can help reduce muscle damage, inflammation, and soreness, which can enhance recovery and improve overall performance.

 

The timing of carbohydrate consumption is also important for athletes who engage in multiple bouts of exercise in a single day or over consecutive days. Consuming carbohydrates during recovery periods between exercise bouts can enhance glycogen resynthesis, allowing for better performance during subsequent exercise bouts.

 

Moreover, consuming carbohydrates during prolonged exercise can help maintain energy levels and delay fatigue.

 

VII. Conclusion

Carbohydrates play a critical role in exercise performance and recovery. While most people understand the importance of carbohydrates for energy, there are several lesser-known facts that athletes and fitness enthusiasts should be aware of.

 

First, carbohydrate intake should be tailored to the type and duration of exercise. Recent research suggests that higher carbohydrate intakes may be necessary for endurance exercise compared to high-intensity interval training. Furthermore, individual carbohydrate needs can vary depending on factors such as body weight and exercise intensity.

 

Second, exercise can have both short-term and long-term effects on carbohydrate metabolism. In the short-term, exercise increases the use of carbohydrates for energy, leading to glycogen depletion. In the long-term, regular exercise can improve the body's ability to store and use carbohydrates for energy, leading to improved performance.

 

Third, the timing of carbohydrate intake is crucial for exercise performance and recovery. Pre-exercise carbohydrate feeding can improve performance by providing the necessary energy for exercise. Post-exercise carbohydrate intake can enhance recovery by replenishing glycogen stores and promoting muscle protein synthesis.

 

Overall, athletes and fitness enthusiasts should aim to consume adequate amounts of carbohydrates, tailored to their individual needs and exercise type. They should also consider the timing of carbohydrate intake for optimal performance and recovery. By paying attention to these lesser-known facts, individuals can maximize the benefits of carbohydrates for exercise.


Back Strain: Accelerate Your Recovery with These Tips

Musculoskeletal Health with Dr D. 

Back Strain: Treatment Guidelines for Back Strain

Most back strains do not require specific treatment, because they usually recover spontaneously in relatively short period of time. There are, however, certain strategies that may help you recover faster and make the process less painful. For full list of detailed recommendations on optimizing your recovery process please follow this link.

Mobility: swimming and walking

One of the most important things to keep in mind, is that during the acute phase, it is of outmost importance to stay mobile. While short term bed rest may help to relieve some of the pain initially, staying in the bed more than 24-48 hrs leads to worse outcomes and prolongs the recovery time.

While becoming more mobile is important, you will need to initially modify your daily routine to avoid high impact activities, lifting heavy objects and twisting movements. The best way start increasing physical activity is walking for few minutes several times a day and eventually transitioning to recreational swimming in a slow pace. Swimming is excellent exercise for recovery from back injuries. It’s weightless nature eliminates gravity and pressure on the spine and takes the muscles and joints through full range of motion. Both activities will keep the muscles engaged without additional strain, and get them slowly ready for more physically demanding exercises.

Heat

Heat plays important role in the treatment of back pain. It improves local blood circulation which enables the injured tissue to heal faster while decreasing muscle stiffness and pain. Applying heat to the painful area after the initial 48 hrs from the onset of the injury also helps with stretching. Additionally, heat reduces pain and makes movement easier when getting out of the bed in the morning. Heating pad should not be applied directly on the skin. While it can be used  several times a day, it should never be applied for longer than 20 minutes at a time. Never sleep on your heating pad!!

Stretching, Massage and Acupuncture

Gentle stretching of the back muscles after using heating pad is important to slowly start elongating the tight muscles. Never push beyond the level of gentle stretch. If stretching is painful, you need to pull back. Gentle massage around the painful area can be very relaxing and soothing. You do not need to spend money on massage therapist, but if you can afford it, this might be a good time to splurge on couple sessions. Getting a simple massage from your partner at least once a day for the first few days can be equally if not more effective. Alternately, you can try self-acupressure using a tennis ball while leaning against the wall and finding the tender spots in your back. Both massage and acupressure help to promote local blood circulation and loosen up the tight muscles which results in increased mobility and less pain. If acupuncture is available to you, getting few treatment sessions can be very helpful to promote relaxation of the tight muscles, increase local blood circulation and decrease pain. For more information about acupuncture please follow this link.

The role of pain medication

While pain medication will not help you to recover faster, they can help to make the process more bearable. Motrin, naproxen or Alleve can be used in mild to moderate pain, to take the edge off the pain. Stronger pain medication, prescribed by your provider, may be necessary when pain is more severe.

 

Goals for pain management

It is very important to understand, that complete pain relief is neither realistic, nor the goal of pain medication or any treatment modality discussed in this article. Pain is a protective mechanism. It makes us start paying attention to our body and prevents us from causing further damage. Additionally, there is no single best remedy. Patience in combination with several treatment strategies placed in the context of a comprehensive treatment protocol, has been shown to lead to the best and fastest recovery.

 

To learn more about complementary therapies, visit National Center for Complementary and Integrative Health


Back Pain and Physical Therapy

Physical Therapy and Back Pain

Physical therapy is frequently used as a part of an overall treatment protocol to treat acute or chronic back pain. The goal of physical therapy is to relieve pain, help the body in the healing process, and restore normal functional pain-free movement. A physical therapist can prescribe specific rehabilitation exercises alone or in combination with dry needling, TENS, heat application, soft tissue release or gentle manipulations.  Physical therapy is generally initiated if an injury is not spontaneously recovering with conservative treatments within 2-6 weeks. In case of severe acute back pain, however, a referral to physical therapy can be initiated right away.

Physical therapy did not help my back pain

Many patients frequently complain that physical therapy has not worked for them. They refuse to follow up with the referral made by their provider and demand Xrays or MRIs to find out why their back continues to hurt. While X-ray or MRI is not necessary in the majority of chronic or acute back pain, physical therapists frequently order these studies if the patient's condition is not responding to the treatment protocol. Imaging studies can also be ordered if the physical therapist feels that it will help them create a more specific treatment plan. Imaging studies, however do not cure back pain. It is critical to realize that any treatment modality only works if the patient is an active participant. When it comes to physical therapy, the reality is that most patients are not compliant with the prescribed treatment plan. It is not enough to come to physical therapy once or twice a week for half an hr session and expect to see major improvements. Adherence to prescribed exercise at home as instructed by the physical therapist is the key. Physical therapy sessions at the clinic should be used primarily as an opportunity to assure the correct form and assess the progress.  To get the most from physical therapy, the majority of work has to be done at home.

 

Key factors in the treatment of chronic back pain

While most acute back pain eventually resolves on its own, chronic back pain tends to fluctuate between days with more or less pain. To increase the number of days without pain or with only slight discomfort, something fundamental has to change. There are many factors that impact the successful treatment of back pain.  Two of the most important factors are elimination of aggravating factors and correcting muscle imbalance. Physical therapists are medical professionals with extensive training in skeletomuscular disorders and thus best suited to help patients accomplish both.

Individualized treatment and workout plans

Physical therapists can review with patients their daily routine and help them identify the major aggravating factors that continue to flare up their back pain or prevent the maximal recovery.  They will thoroughly asses the patient’s condition and create an individual exercise treatment plan. Physical therapists can help the patient tailor a specific work out routine that will help them achieve their personal fitness goals without aggravating their back pain. Additionally, physical therapists are the top authority to teach patients the correct execution of individual exercises to prevent future injuries. Incorrectly performed exercises continue to be the leading cause of many exercise-related injuries. Incorrectly performed exercises can lead to permanent joint or back injury.

 

Summary

Physical therapy is an integral part of any comprehensive treatment approach to chronic back pain. In some cases, physical therapy can be, however, beneficial also in acute cases of back pain. Physical therapists often incorporate variety of techniques and tools when designing their individual treatment plan. Imaging is usually not needed in most cases of uncomplicated chronic and acute back pain but imaging studies can be ordered by the physical therapist if it is indicated. Physical therapists are top experts in designing individual workout routines that will help patients achieve their fitness goals without risking further injuries. Lastly, physical therapy only works if patients become active participants.